Background

- Towers of Hanoi: a classic problem
 - Three poles to move disks on
 - Goal is to move all disks to third pole
 - Certain rules apply in movement of disks
- Can be represented as a direct graph
 - $S =$ start node, $A =$ auxiliary node (between S and D nodes), $D =$ destination node
 - Two edges between every two nodes
Solvable and Finite Graphs

- A graph is *solvable* when:
 - There exist vertices S, D, and A
 - There exist paths from S to A, from A to D, and from D to S

- *Solvable* means arbitrary number of disks can be moved from S to D

- Any graph that is not solvable is *finite*
 - A finite number of disks can be moved
Hanoi Graphs

- Original Hanoi graph requires $2^d - 1$ moves ($d =$ number of disks)

- Modified Hanoi graph (no edges between S and D) requires $3^d - 1$ moves
The K Graph

- Has $k+3$ nodes, S_0 through S_k, A, D
- Established formula: $k \times d + 3^d - 1$
- Algorithm: moving from to S_k takes $k \times d$ moves, then a modified Hanoi graph
Conjecture

- The K graph is the worst graph[2]
- Possibly false
- Looking for a counterexample
- The Cycle graph a possibility
The Cycle Graph

- 1 edge between each 2 nodes (a “cycle”)
- Two scenarios: 1. $d < n$; 2. $d \geq n$
Scenario 1 Formula

- Starting with first scenario, \(d < n \)
- Formula: \(0.5n^3 - (n - d - 0.5)n^2 + [-1 + (n - d)\text{choose}(2)]n + n - d \)
- Simplifies to: \(n\left[(d+1)\text{choose}(2)\right] - d \)
- Further simplifies to: \(n^*\left[(d+1)\text{choose}(2)\right] - d \)
Algorithm: Step One

- Found algorithm
- Spread disks out on graph
- Move smallest disk to last or \((n^{th}) \) node
- Move second smallest disk to second-to-last or \((n-1)^{th} \) node
- Until last disk is on \((n-d+1)^{th} \) node
Figure: Step One

For example: $n = 4, d = 3$
Algorithm: Step Two

- Move the disks forward one by one
- Move the smallest disk to first node
- Move the second smallest to last node
- Whenever largest disk in-game reaches last node, remove it from game
- Until all disks are removed
Figure: Step Two

- Same example
Counterexample

<table>
<thead>
<tr>
<th>Number of disks (d)</th>
<th>Number of nodes (n)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>29</td>
<td>32</td>
<td>35</td>
<td>38</td>
<td>41</td>
<td>44</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>92</td>
<td>96</td>
<td>100</td>
<td>104</td>
<td>108</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>257</td>
<td>262</td>
<td>267</td>
<td>272</td>
<td>277</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>752</td>
<td>758</td>
<td>764</td>
<td>770</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2221</td>
<td>2228</td>
<td>2235</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6608</td>
<td>6616</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19745</td>
</tr>
</tbody>
</table>

Table 1. Partial table for number of moves for the K graph when d < n

<table>
<thead>
<tr>
<th>Number of disks (d)</th>
<th>Number of nodes (n)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>21</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>56</td>
<td>66</td>
<td>76</td>
<td>86</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>85</td>
<td>100</td>
<td>115</td>
<td>130</td>
<td>145</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>141</td>
<td>162</td>
<td>183</td>
<td>204</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>217</td>
<td>245</td>
<td>273</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>316</td>
<td>352</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
</tbody>
</table>

Table 2. Partial table for the cycle graph when d < n
Scenario 2

- When \(d \geq n \)
- Still writing an algorithm
- Basic idea:
 - Spread out first \(n-1 \) disks
 - Greedy algorithm: make least moves at each node to make empty node for previous disk
 - Becomes easy when \(d < n \)
Conclusions

- K graph requires less moves than cycle graph when $d < n$

- Conjecture
 - K graph = worst graph in terms of moves
 - Proven false
 - Do not need to look at case when $d \geq n$
Sources

1. Leiss, Ernst L. “Solving the ‘Towers of Hanoi’ on graphs.”
2. Leiss, Ernst L. “The Towers of Hanoi on Graphs: Upper and Lower Bounds on the Number of Moves.”
Questions

Thank you. Any questions?